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Abstract 

The Internet has become an integral and pervasive aspect of society.  Not surprisingly, 

the growth of ecommerce has led to focused research on identifying relationships 

between user behavior in cyberspace and the real world – retailers are tracking items 

customers are viewing and purchasing in order to recommend additional products and to 

better direct advertising.  As the relationship between online search patterns and real-

world behavior becomes more understood, the practice is likely to expand to other 

applications.  Indeed, Google Flu Trends has implemented an algorithm that accurately 

charts the relationship between the number of people searching for flu-related topics on 

the Internet, and the number of people who actually have flu symptoms in that region. 

Because the results are real-time, studies show Google Flu Trends estimates are typically 

two weeks ahead of the Center for Disease Control.  

The Air Force has devoted considerable resources to suicide awareness and 

prevention.  Despite these efforts, suicide rates have remained largely unaffected.  The 

Air Force Suicide Prevention Program assists family, friends, and co-workers of airmen 

in recognizing and discussing behavioral changes with at-risk individuals.  Based on 

other successes in correlating behaviors in cyberspace and the real world, is it possible to 

leverage online activities to help identify individuals that exhibit suicidal or depression-

related symptoms? 

This research explores the notion of using Internet search queries to classify 

individuals with common search patterns.  Text mining was performed on user search 
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histories for a one-month period from nine Air Force installations.  The search histories 

were clustered based on search term probabilities, providing the ability to identify 

relationships between individuals searching for common terms.  Analysis was then 

performed to identify relationships between individuals searching for key terms 

associated with suicide, anxiety, and post-traumatic stress disorder.  Findings based on 

the calculated χ2-test statistic demonstrate a strong correlation between the individuals 

who searched for the key terms.  The results demonstrate the utility of clustering 

individuals who exhibit similar search patterns and provide the foundation for future 

efforts to bridge the gap between cyberspace and real-world situational awareness for 

identifying at-risk individuals. 
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AN EXPLORATORY STUDY OF CYBER-BASED SEARCH QUERY 
ATTRIBUTES TO IDENTIFY BEHAVIORAL INTENT 

 

I.  Introduction 

1.1 Background 

The frequency at which society looks to the Internet for answers inspired John Battelle, 

the founder of Federated Media Publishing and Wired Magazine, to develop and define 

the Database of Intentions: 

“The aggregate results of every search ever entered, every result list ever 

tendered, and every path taken as a result... This information represents, in 

aggregate form, a place holder for the intentions of humankind - a massive 

database of desires, needs, wants, and likes that can be discovered, 

subpoenaed, archived, tracked, and exploited to all sorts of ends. Such a 

beast has never before existed in the history of culture, but is almost 

guaranteed to grow exponentially from this day forward. This artifact can 

tell us extraordinary things about who we are and what we want as a 

culture. And it has the potential to be abused in equally extraordinary 

fashion [1].” 

The underlying question with the Database of Intentions is “What, in the end, might 

search tell us about ourselves and the global culture we are creating online?”  Online 

search is a means to an end – an attempt to achieve an underlying goal of discovering 

what a user believes exists on the Internet. 

The Internet has become the first place many people look for real-world answers.  

Ginsberg et al. [2] described how monitoring health-seeking behavior in the form of 

online search queries can improve the early detection of both seasonal and pandemic 
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influenza.  Researchers from West Point and Princeton University determined that drastic 

changes in online search queries in Egypt at the end of 2010 into 2011 provided strong 

indicators to the upcoming uprising in Egypt [3].  These two cases provide an initial 

framework to develop and implement an automated information system capable of 

quantifying relationships between cyber and real-world behavior. 

1.2 Motivation 

According to the August 2010 final report of the Department of Defense Task Force on 

Prevention of Suicide by Members of the Armed Forces, from 2005 to 2010, service 

members committed suicide at a rate of approximately one every 36 hours [4].  Last 

September during a presentation to the Subcommittee on Military Personnel Committee 

on Armed Services, United States House of Representatives, Lieutenant General Darrell 

Jones stated that “Despite our prevention efforts, suicide rates remain a concern… So far 

this year, 56 Total Force Airmen and Civilians have taken their own lives, which equates 

to a suicide rate of 14 suicides per 100,000 Airmen.” [5] 

The Department of Defense has devoted significant resources to suicide 

awareness and prevention, including over $67 million in research [4].  These efforts are 

primarily focused on providing family, friends, and co-workers with information on 

identifying at-risk personnel.  According to the United States Air Force Suicide 

Prevention Program (AFSPP), these three groups are in the best position to recognize 

behavioral changes, discuss these changes with the at-risk individual, and provide care 

and support [6].  Although behavioral change in itself does not imply someone will 

become suicidal, the indicators may identify individuals that warrant close monitoring.  
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Despite Air Force efforts, the suicide rates have remained largely unaffected.  The 7 May 

edition of the Air Force times pointed out “more airmen killed themselves in the first 3 

months of this year than in any other first quarter in the past decade.” [7] 

This research explores the possibility of leveraging a different indicator of 

behavioral change – online search queries.  As society becomes more dependent on the 

Internet for answers to life’s questions [8], it seems logical that individuals considering 

hurting themselves would search for answers as well.  If so, is it possible these 

individuals may exhibit behaviors within cyberspace that indicate they are at-risk? 

1.3 Problem Statement 

Traditional suicide research is limited by several factors [9].  First, the variables selected 

for analysis are decided by the researchers, making them inherently subjective.  

Furthermore, the studies are retrospective since the suicide victims have already passed.  

For example, the analysis of suicide notes after an incident is often the primary means for 

insight into the individual’s motivations [9].  Finally, the data sets are unrepresentative 

convenience samples since researchers are typically limited by their sources.  Search 

query analysis has the potential to minimize these limitations and provide early indicators 

of someone considering suicide or suffering from a depressive state. 

At a macro-level, this research effort explores the possibility of a relationship 

between cyberspace and real-world behavior.  This is accomplished by identifying, 

classifying, and analyzing the online search query histories of individuals in order to 

cluster users who exhibit similar search patterns.  Once these search histories are 

classified and clustered, topics associated with suicide, anxiety and post-traumatic stress 
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disorder (PTSD) are targeted to determine if relational attributes exist that provide insight 

into real-world characteristics. 

1.4 Approach 

In order to examine the relationship between cyber and real-world behavior, search query 

data is parsed from the proxy logs of nine Air Mobility Command Air Force bases.  

Search queries are attributed to the originating internet protocol (IP) address, and a search 

history is saved for each IP.  Text mining is then performed on these search histories to 

determine the most probabilistic topics based on the search query terms.  The search 

histories are then clustered based on these probabilities, making it possible to 

mathematically determine the relationship between different search histories. 

Once search histories are classified and clustered, those which contained search 

queries with terms associated with suicide, anxiety and PTSD are evaluated to determine 

if relationships exist with the clustered data.  Indeed, a correlation demonstrates the 

ability to group search histories based on search queries – a first step in connecting real-

world and cyber-indicators for identifying at-risk personnel. 

1.5 Contributions 

Previous research provides an initial framework for the development and implementation 

of an automated information system capable of quantifying relationships between cyber 

and real-world behavior [2] [3].  A system focused on the application of Internet search 

queries to identify individuals at-risk for suicide could have significant impact across the 

Department of Defense (DOD). 
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Despite the one-dimensionality, search query analysis could have a significant 

impact on the most significant limitation in traditional suicide research – a dependence on 

previously collected data [9].  However, an even greater impact may be the addition of a 

second dimension – clustering the online search histories of users and identifying 

relationships with at-risk individuals who have searched for topics relating to suicide, 

anxiety and PTSD.  By determining the heuristics and taxonomy required to model online 

search patterns, this research lays the foundation for future efforts to bridge the gap 

between cyber and real-world situational awareness. 

1.6 Assumptions and Limitations 

Internet search logs are obtained from Air Force bases and, as such, it is assumed the 

users are either in the military, employed by the government, or accustomed to military 

culture.  Therefore, the results of this research may not apply to the general population.  

Although future research should include a larger data-set, both spatially and temporally, 

this would guarantee an improvement in results. 

Additionally, the Air Force associates IP address to end-user computer systems 

via associated dynamic leases.  Although the possibility exists that multiple users are 

associated with the same IP address, this scenario is not consistent with Air Force 

implementation processes.  Indeed, the Integrated Network Operations Security Center, 

responsible for network management, has deemed that it is sufficient to assume that one 

IP address is associated to one specific user according to their operating practices.  In 

keeping with maintaining user anonymity, there is no personally verifiable information 
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within the logs – IP address rather than user names are used to delineate unique search 

queries. 

Regarding the disorder dictionaries, although the terms included in each are 

mutually exclusive, the symptoms are not – as the disorders studied share many.  

Furthermore, if other terms are used in the dictionaries, the output will likely be very 

different. 

1.7 Thesis Organization 

Chapter 2 describes previous and related work in the fields of behavioral modeling, data 

mining, and pattern recognition.  Chapter 3 details the methodology used to pre-process 

the proxy log data and discusses associated data attributes.  Chapter 4 examines 

relationships and observations by clustering individuals whose search histories were 

associated with suicide, anxiety and PTSD search queries.  Finally, Chapter 5 concludes 

with a discussion on the implications of the research and ideas for future research. 
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II. Literature Review 

This chapter focuses on the major influences in behavioral modeling and prediction. 

Although literature relating to this specific topic as it applies to cyberspace is extremely 

limited, a great deal of supportive literature does exist.  This chapter examines pertinent 

research in these areas. 

2.1 Overview 

There is an innumerable amount of information available online.  The challenges and 

benefits of modeling online search patterns have grown immensely over the last several 

years [10].  The process of extracting these patterns is a relatively young, 

interdisciplinary field within computer science termed data mining [11].  This research 

focuses on web mining, a subcategory of data mining.  Web mining seeks to discover 

patterns in web data and use the patterns to develop realizations about the people who 

produced them [12]. 

Before web mining can take place, a suitable data-set must be identified and 

collected.  The suitability of a data-set depends on the goals of the research effort.  

Regardless, the initial step involves preprocessing the data to allow for the practical 

application of data mining techniques and statistical analysis [12].  These initial steps are 

critical, as they set the foundation for the research effort.  If the collected data does not 

include the correct demographic and type of information, any successive research will be 

difficult or impossible.  Therefore, a heavy emphasis is placed on the targeting, planning, 

and collection of web usage data. 
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Web usage data can be partitioned into four categories: Usage, Content, Structure, 

and User [13].  Usage data is typically used for web mining and pattern extraction, since 

it includes search queries and represents the navigational behavior of the user [11].  

Every HTTP request will typically generate an entry in a server log, which would include 

information such as the time and day of the request, client IP address, resources 

requested, status of the request, and if the client is a returning visitor - most likely with a 

client-side cookie. 

After collection, the data often requires a substantial amount of data preparation.  

Pre-processing the original data, integrating data from multiple sources, and transforming 

the integrated data into a form suitable for input into specific data mining operations must 

be accomplished before any analysis can be performed [11]. 

2.2 Behavioral Modeling 

For the purpose of this research, cyber behavior is defined as the set of observable online 

activities (e.g., search queries) and the statistical characterization that accompanies it.  

Internet search queries have the potential to provide insight into human behavior.  For 

example, a user browsing web sites for cars, financing, and dealerships could be 

characterized at the most basic level as simply “web browsing.”  Note that this 

characterization alone does not specify the underlying cyber mediated behavior 

associated with buying a car. 

Several research efforts have demonstrated valid relationships between user 

behavior in cyberspace and the real world [2] [3] [14].  Retailers are tracking the items 

their customers are viewing and buying, and using this information to determine other 
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items to recommend and advertise to them [10].  By doing this, retailers are using trends 

in cyber behavior to make real-world dollars.  Indeed, these relationships are already 

being exploited.  Google Flu Trends accurately charts the relationship between the 

number of people searching for flu-related topics on the Internet, and the number of 

people who actually have flu symptoms in that region [2].  Figure 1 shows a comparison 

of the Google Flu Trend estimate and Center for Disease Control (CDC) truth data from 

2004 through the present [2].  Because Google Flu tracks search queries in real-time, the 

estimates are typically two weeks ahead of CDC, which relies on post-processed data. 

 

Figure 1. Google Flu Trends estimate vs. CDC Data 

 
Researchers from West Point and Princeton University found drastic changes in 

online search queries in Egypt at the end of 2010 into 2011.  They determined these 

changes were significant enough to have hinted to the upcoming uprising in Egypt, if the 

changes had been monitored [3].  For decades, researchers in psychology have studied 
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behavior and the process people go through before a behavior is established [15].  There 

has been minimal formal research at this juncture to extend these theories to cyberspace. 

2.2.1 Theory of Planned Behavior (TPB) 

Extensive research has been conducted in psychology regarding Icek Ajzen’s 

Theory of Planned Behavior (TPB) which explores the link between attitudes and 

behavior [16].  Outside of psychology, TPB has been used to explain and exploit 

behavior in many fields including advertising, public relations, and healthcare [16] [17] 

[18].  The theory states that an individual’s behavioral intentions and behaviors 

themselves are directly related to his/her attitude toward the behavior, subjective norms, 

and perceived behavioral control [15]. 

Attitude is defined as an individual's positive or negative feelings about 

performing the behavior in question.  It is calculated by assessing two things: the 

individual’s beliefs regarding the consequences of the behavior and the desirability of 

these consequences.  Subjective norm is an individual's perception of whether other 

people (specifically people close to the individual) think the behavior should be 

performed.  Finally, perceived behavioral control is defined as an individual’s perception 

of how difficult it would be to perform the behavior. 

These three factors feed into each other, with the relationships depicted by the 

solid lines in Figure 2.  The arrows describe the direction of the links.  According to 

Ajzen, the combination of attitude, subjective norm, and perceived behavioral control 

determine intent [15].  Intent is an indication of an individual’s readiness to perform the 

behavior.  The dotted line signifies that perceived behavioral control serves as a proxy 
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for predicting behavior, since performance of a behavior depends on both favorable intent 

and a sufficient level of behavioral control [15]. 

 

Figure 2. Theory of Planned Behavior 

 
Previously, the only way to measure these factors was actively; by talking with 

the individual, completing surveys, etc.  This research explores the possibility of 

passively gathering information regarding these factors through search queries.  For 

example, if an individual was unsure of public perception regarding smoking, it would 

not be unusual for him/her to submit a search query about it.  Furthermore, if the 

individual was attempting to quit smoking, he/she may look to the Internet to provide 

answers on the best way to accomplish it (perceived behavioral control). 
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2.3 Web Usage Mining 

Proxy logs are data-rich, but information-poor.  Web mining seeks to discover patterns in 

web data and use these patterns to develop knowledge about the individuals or groups 

who produced them [11].  In general, Web Mining is broken out into three core areas: 

web structure mining, web content mining, and web usage mining [11].  Web usage 

mining, the focus of this research, is by far the biggest growth area [13]. 

While web structure and content mining are primarily concerned with web sites 

and web data, web usage mining is concerned with the end user.  The focus of web usage 

mining is to extract user access patterns by analyzing and interpreting information from 

users’ Internet browsing patterns.  One of the fundamental analysis techniques used in 

web usage mining involves tracking clickstreams - historical descriptions of what a user 

did and where a user went while browsing a particular web site [19]. 

Clickstreams contain many sources of data including the timestamp and source of 

the request, the destination host, an assortment of information about the browser, and the 

Uniform Resource Identifier (URI).  The URI is a critical piece of information in a 

clickstream.  It represents the global address of documents and resources present on the 

World Wide Web, with web page addresses being the most common [19]. 

Although research in web usage mining has been conducted in a number of fields 

including web page pre-fetch/cache, web site optimization, and recommender systems – 

e-commerce is generating the most interest and revenue [13].  Continued increases in 

online shopping have spurred a growing interest in profiling and analyzing online 

shoppers to better target sales [20].  Retail and marketing firms are taking advantage of 
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user profiling by aggregating data on the purchase history of individuals (on and offline), 

finance records, magazine subscriptions, supermarket savings cards,  surveys, 

sweepstakes entries, and many other sources [19].   In order to make this information 

meaningful, it is pre-processed, organized, and analyzed using a number of statistical and 

data mining techniques.  The final product is a basic shopping profile of an individual.  

When aggregated, these profiles are used for targeted ad campaigns, personalize 

shopping experiences, and making recommendations for additional product purchases – 

all based on a user’s purchase history. 

2.4 Text Mining and Cluster Analysis 

Another subset of data mining is text mining – where the words within a document 

become the target set for identifying and extracting patterns.  The theory behind text 

mining has been defined and explored since the inception of data mining.  At the most 

basic level, text mining analyzes a set of documents for meaningful information and 

patterns within the text.  The size of the sample set can range from as small as hundreds, 

to as large as millions, and the differing structures of the documents dictates the amount 

of standardization required to improve the results [21].  The complexity of mining words 

instead of numbers means more computational processing power is needed for analysis.  

Compared to data mining, text mining requires more extensive cleaning and 

standardizing before the data can be analyzed [21].  The immense growth of technology 

over the last several decades has made research in text mining a reality. 

Most automated topic modeling/clustering techniques extract and generate labels 

from data sets based on the keywords and phrases within the text, eliminating the rigidity 
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associated with a pre-determined set of labels [22] [23].  Although this approach is ideal 

from a human perspective, it severely complicates the normalization of the data and has 

the potential to produce a distinct label for each distinct object.  Therefore, this research 

effort opts to define a static number of topics to map the input data.  The challenge with 

this approach is finding a representative set of category labels with the necessary depth 

and flexibility.  This process is described in Chapter 3. 

One significant disadvantage with machine categorization is its inability to 

interpret polysemy and homonyms – terms having multiple meanings depending on the 

context [19].  For example, the word “bow” can reference a kind of tied ribbon or a 

weapon that shoots arrows.  Therefore, machine generated categorization should involve 

some manual, human verification.  When this is not possible or must be avoided, 

machine-made datasets are the only real alternative, and can either be supervised or 

unsupervised. 

The objective of supervised text categorization is to learn classifiers from 

examples or training sets.  The three most widely studied and effective algorithms are k 

nearest neighbor (k-NN), Naive Bayes, and support vector machines (SVM); all three 

rely on pre-categorized training data.  Although some research has been performed on 

unlabeled training data, results are not comparable [24] [25].   

In unsupervised learning, the machine receives inputs only without supervised 

target outputs.  A number of well studied algorithms exist in the realm of text-based 

categorization, but most pertinent to this research is hierarchical text clustering [26].  

Clustering, the process of finding natural groups in unlabeled data, is a well-documented 
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form of unsupervised learning relative to text categorization.  The goal behind clustering 

is to characterize groups of individuals and maximize intra-cluster similarity while 

minimizing inter-cluster similarity [19].  This type of analysis helps determine the most 

prevalent characteristics within a group, which can then be used to customize individual 

profiles. 

Within clustering is another unsupervised learning technique called Topic 

Models.  Given a topic is a probability distribution over words, Topic Models provide a 

simple mechanism to analyze and label copious volumes of text by treating documents as 

a mixture of topics.  There are four different pieces within a document that are accounted 

for: characters, words, terms, and concepts [21].  Characters describe letters, numbers, 

and symbols within the text.  Words describe a combination of characters with a space or 

punctuation on either side.  It is computationally less expensive to mine characters and 

words than terms and concepts, but the information and predictive ability are severely 

limited.  Terms are a combination of two or more words based on occurrences within the 

text.  Terms offer more information to the analyst, but if the amount of data is limited, 

there may be too few occurrences.  The last piece is concepts, which are derived from 

hybrid categorization methodologies and by cross-referencing phrases and words to 

determine what the text is truly describing, even if specific words or phrases are not 

included [21].  Topic Mining uses contextual clues to connect words with similar 

meanings and distinguish words with multiple meanings, and have been implemented 

successfully in multiple research efforts as a means to effectively and efficiently extract 

key concepts from text [27] [28] [29]. 
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Changes in the frequency of key words or phrases within a document or over a 

period of time can provide valuable information to analysts.  Unfortunately, prepositions 

and other stop-words such as the, and, and is can make it difficult for the algorithm to 

focus on words that have meaning.  Latent Semantic Analysis (LSA), Probabilistic Latent 

Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA) each have a different 

process to extract predictive and useful information from text, and will be described in 

detail in this section. 

2.4.1 Text Mining Examples 

The medical field was one of the first to seriously utilize text mining to aid 

research [16].  The National Centre for Text Mining published an article describing 

attempts to improve the organization of bacteria classes, since the names and descriptions 

of many bacteria vary with location [30].  Another research effort applied text mining to 

descriptions of biological activity and the target of the biological activity (i.e., gene, 

protein, cell, or microorganism) to predict and understand the effects of natural 

substances [31].  A similar effort sought to automatically extract the microorganisms and 

habitats [32]. 

Marketing and knowledge management fields have also used text mining to 

improve their practices.  Researchers in marketing have mined large amounts of data in 

an attempt to more effectively reach customers and encourage them to purchase particular 

products [33].  The convenience store 7-Eleven used text mining to determine where and 

how to implement an iced coffee product by text mining social media sites to gain insight 

into peoples’ thoughts about their products and flavors [34].  Going a step further, text 
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mining was conducted on social media sites to determine customer sentiment toward 

companies, and then applied to trends in the stock market - suggesting that text mining 

may allow researchers to detect economic trends more quickly [35]. 

These medicine and marketing examples are just scratching the surface of what 

research in text mining can bring in the future.  For years, the Department of Defense 

(DOD) and other government agencies have utilized text mining to track possible threats 

to the nation’s defense, predict/detect terrorist activities, and find/trace viruses [36] [37] 

[38].  This research effort describes a different application of text mining for the DOD – 

analyzing online search histories of users in order to classify the heuristics for online 

search patterns.  

2.4.2 Latent Semantic Analysis (LSA) 

LSA multiplies a series of three matrices (i.e., document eigenvector, eigenvalue, 

and term eigenvector) to approximate an original matrix to describe the document.  The 

size of the document eigenvector is determined by the number of documents (n) 

multiplied by the unique dimensions of the sample set (r). The eigenvalue matrix defines 

the unique dimensions (n x r) and the term eigenvector matrix is the number of unique 

terms (m) multiplied by the number of unique dimensions (m x r). 

LSA is limited in that the words in one topic have little relation to other topics, 

and the words in one topic cannot occur in other topics.  This means words with multiple 

meanings cannot be classified under two different topics.  LSA works best on documents 

with similar writing styles, but its functionality is limited by the fact that the reduction of 
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the document matrix does not use robust probability theory and an adequate number of 

topics cannot be determined statistically [39]. 

2.4.3 Probabilistic Latent Semantic Analysis (PLSA) 

PLSA expands on the LSA methodology and improves results by calculating 

several probabilities: the document within the sample set to be P(d), a topic to be P(z|d), 

and a word P(w|z); where d, z, and w stand for document, topic, and word respectively.  

P(z|d) describes the probability of a topic given a document.  P(w|z) describes the 

probability of a word given a topic.  PLSA finds general themes or trends in documents 

by expressing the results in terms of probabilities of these three occurrences [39].  PLSA 

does allow words to occur in different topics but does not fully reflect the generative 

process at a document level [39]. 

2.4.4 Latent Dirichlet Allocation (LDA) 

LDA was developed to extend the applications of LSA and PLSA.  It determines 

the number of words in a document by sampling with a Poisson distribution, creates a 

distribution for the topics using the Dirichlet distribution, and generates topics and words 

for the topics based upon a document’s distribution [39].  LDA performs well on lengthy 

documents that have multiple topics and includes spatial statistics to provide a relational 

factor to words that occur near each other often. 

By adjusting the analysis, LDA ensures the number of occurrences of one word or 

phrase does not overshadow the power or significance of other words [40].  A 

hierarchical Bayesian model enables LDA to determine topics, filters out insignificant 

stop-words, and categorize the words from the texts into the topic(s) [41].  LDA was the 



19 

best fit for this research because of its superior ability over LSA and other text mining 

methods to separate words and create topics that have a probability distribution of how 

often words occur within the documents.  After each iteration through the sample set of 

documents, LDA sorts each word based upon the probability distributions of the words 

given the topics, then re-calculates the distributions for the topics.  The total number of 

iterations depends on the application, but eventually the words given the topics gain a 

specific distribution which describes the topic.  At this point, the topics become well 

defined and distinct.  Each iteration calculates an updated conditional probability 

distribution of words given a topic, and each word is then allocated into topics based on 

this distribution. 

Figure 3 provides a graphical representation of the LDA model.  The shaded node 

represents observed variables while all others are latent variables.  Arrows represent 

dependencies and boxes represent repeated sampling operations.  α and β are the dirichlet 

priors used to parameterize these distributions.  The boxes are “plates” representing 

replicas. The outer plate represents documents, while the inner plate represents the 

repeated choice of topics and words within a document [37].  Symbols represented in 

Figure 3 are as follows: 

M: number of documents in the data set 

N: number of words per document 

T: number of topics 

z: topic from which a particular word w is drawn 

θ: per-document multinomial topic distributions 

ϕ: per-topic multinomial word distributions 
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Figure 3. Graphical model representation of LDA 

 
LDA is a straightforward process: 

1. Choose values for the hyper-parameters α and β and the number of topics T.  The 
values of α and β depend on T and the vocabulary size.  Recommended choices 
are α = 50/T and β = 0.01 [29]. 

2. For each document: 
a. Choose the number of words N. 
b. For each word: 

i. Sample z from θ(j), where j is the current document index. 
ii. Sample w from ϕ(z). 

In order to perform document clustering, LDA finds P(z|w) for fixed α, β, and T.  

Once LDA calculates P(z|w), the distributions ϕ and θ are estimated for each topic and 

document.  The topic distributions (θ) form the basis of the clustering method. 

Miller provides a simple example to describe the LDA process [42].  Given 

millions of pennies, quarters, dimes, nickels, half dollars, and dollar coins, LDA 

randomly separates them into topics.  LDA then creates a distribution of each topic of 
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coins.  While one topic may contain thirty pennies, five dimes, twelve quarters, two 

nickels, one half dollar, and no dollar coins, another topic may have a high density of 

nickels.  After the next iteration through the sorting process, LDA uses the distribution of 

the coins within that topic to determine which topic best describes each coin.  In this case, 

LDA will allocate more pennies to the first topic and more nickels to the second.  After 

repeating this process a few hundred times, topics dominated by one coin or another will 

emerge and the topics will clearly represent a particular coin. 

2.4.5 Self-Organizing Maps (SOMs) 

SOMs are a form of unsupervised neural network consisting of a fixed lattice of 

processing elements, which is typically 2-dimensional [43].  Each processing element has 

an associated prototype vector, which initially is random.  Learning takes place in a 

competitive fashion.  For each input, the processing element with the shortest Euclidean 

distance is identified as the Best Matching Unit.  The prototype vector for all other 

elements within a neighborhood is updated according to: 

𝑤𝑗(𝑡 + 1) =  𝑤𝑗(𝑡) +  𝛼(𝑡)ℎ𝑗𝑖(𝑡)(𝑥𝑚 − 𝑤𝑗) 

where wj is the prototype vector associated with the jth processing element, α(t) is a 

monotonically decreasing learning rate, hji(t) is a time-decreasing neighborhood function 

(typically Gaussian), and xm is the input sample.  Over time, the original input space 

converges to a low-dimensional representation.  Self-organizing maps naturally cluster 

the input data so that inputs with similar features are mapped to the same or neighboring 

processing elements, while preserving the topology of the original high-dimensional 

input space on the lattice [44].  These properties, coupled with the relationship 

(Eq. 1) 
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preservation between samples in the high-dimensional input space on the low 

dimensional mapping, make SOMs an ideal tool for visualizing high-dimensional data in 

2-dimensional space [43] [45]. 

Once the elements are mapped onto the SOM lattice, the lattice itself is clustered 

using k-means.  In order to gain a simple and intuitive view of the document collection, 

the lattice is plotted along with cluster boundaries.  Since SOMs preserve the topology, 

the user can visually identify related groups of documents.  Neighboring clusters often 

have one or more topics in common, based on the mean topic distribution for each cluster 

[44]. 

2.4.6 Market Basket Analysis (MBA) 

Market-Basket Analysis (MBA) is a modeling technique based upon the theory 

that if an individual buys a certain group of items, he/she is more/less likely to buy 

another group of items.  Although this research project is not focused on shopping, there 

are some universal concepts used by MBA to determine trends that may also occur in 

online search patterns.  Just as a user is more likely to buy a particular group of items 

based on the ones he is already planning to purchase, a user may be more likely to search 

for a particular term based on the ones he has already searched for. 

Researchers have found that in retail, most purchases are made on impulse.  MBA 

provides clues as to what a customer might have bought had they thought of it ahead of 

time.  Therefore, as a first step it can be used to decide where goods should be located 

within a store.  A set of items in a supermarket domain may be: 



23 

𝐼 = {𝑀𝑖𝑙𝑘,𝑁𝑎𝑝𝑘𝑖𝑛𝑠,𝑉𝑖𝑑𝑒𝑜 𝐺𝑎𝑚𝑒𝑠,𝐶𝑎𝑛𝑑𝑦} 

If it has been observed that people who purchase video games are more likely to buy 

candy, it would become a rule within this example: 

{𝑉𝑖𝑑𝑒𝑜 𝐺𝑎𝑚𝑒𝑠} => {𝐶𝑎𝑛𝑑𝑦} 

Therefore, candy should be placed near the video game display.  This way customers 

shopping for video games, who would have bought candy had they thought of it, will 

now be tempted to do so. 

A major difficulty in MBA is the large number of rule sets.  Although the volume 

of data has been reduced, there is still the problem of asking the user to find a needle in a 

haystack.  In order to avoid missing any exploitable results, MBA requires each rule to 

have a high minimum support level and high confidence level risks. 

The next level of analysis, Differential MBA (DMBA), is a partial solution to this 

problem.  DMBA deals with finding interesting results and eliminating problems with 

potentially high levels of trivial results [19].  It compares results between different stores, 

different demographic groups, different days of the week, different seasons, etc.  If 

researchers observe that a rule holds in one store, but not in any other (or vice versa), 

then they know there is something interesting about that store.  Investigating what makes 

this store unique, from the clientele to the organization of the store itself, is worth 

exploring in hopes of improving sales. 

Most approaches to association discovery are based on the Apriori algorithm, 

which finds groups (i.e., itemsets) of items or pageviews occurring frequently together 



24 

across multiple transactions [46].  Once there exists a set of frequent itemsets, researchers 

can apply constraints on measures of significance and interest to generate interesting 

association rules to satisfy a minimum confidence threshold.  An association rule is an 

expression of the form X→Y [sup, conf], where: 

X and Y are itemsets. 

sup is the support of the itemset X∪ Y - the probability that X and Y occur 
together in a transaction. 

conf is the confidence of the rule, defined by sup(X∪ Y) / sup(X); the conditional 
probability that Y occurs in a transaction given that X has already occurred in that 
transaction. 

Let X be an itemset and Y the multiset of all applicable transactions.  The 

absolute support of the itemset X is the number of transactions in Y that contain X.  The 

relative support of X is the percentage of the transactions in Y which contain X.  The 

support of the rule X→Y is computed as follows: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  
(𝑋 ∪ 𝑌). 𝑐𝑜𝑢𝑛𝑡

𝑛
 

The confidence of a rule, X→Y, is the percentage of transactions P that contain X 

and also contain Y.  It is computed as follows: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
(𝑋 ∪ 𝑌). 𝑐𝑜𝑢𝑛𝑡

𝑋. 𝑐𝑜𝑢𝑛𝑡
 

Confidence determines the quality and predictability of the rule. If the confidence 

of the rule is low, one cannot reliably infer or predict Y from X, which drastically limits 

its use. 

(Eq. 2) 

(Eq. 3) 
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Lin et al. [47] proposed collaborative recommendation - a mining algorithm 

which finds an appropriate number of rules for each target user by automatically selecting 

the minimum support.  It generates association rules among users as well as among items. 

In the case that a user minimum support is greater than a threshold, the system generates 

recommendations based on user associations.  Otherwise, it uses item associations. 

A problem with using a single minimum support threshold in association rule 

mining is that the discovered patterns will not include “rare” but important items which 

may not occur frequently in the transaction data. Thus, for more effective mining, it is 

important to capture patterns and generate recommendations that contain these items.  

Liu et al. [46] proposed a mining method based on multiple minimum supports which 

allow users to specify different support values for different items.  In this method, the 

support of an itemset is defined as the minimum support of all items contained in the 

itemset.  The specification multiple minimum support thus allows frequent itemsets to 

potentially contain rare items which are deemed important.  Most online vendors now 

include recommendations for users based on items they view or purchase, and a 

substantial amount of research on association analysis is underway for these types of 

recommendation systems. 

Forte et al. [48] extended MBA by conducting an experiment investigating 

whether it was possible to determine profiles of online shoppers based solely on outside 

observation by learning repeatable patterns of behavior through data mining techniques.  

Their result suggest that statistical models applied to the actions taken and time spent on 

each decision may enable the discernment of demographic information, as well the 
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inference of connections between shopper and recipients.  These results bring optimism 

to the idea that shopper identity could eventually be determined by examining the action 

itself, as well as the target of the actions. 

Forte and his colleagues believe the methods they employed would translate well 

to other online environments - determining identities in online fraud cases or other issues 

related to cyber security.  They hypothesized that individuals as well as groups with 

similar demographic backgrounds will maintain consistent patterns.  Their test data 

included type and sequences of actions, time between actions, and a confidence rating for 

each participant and profile. 

The experiment used two metrics - general data trends and prediction model 

accuracy.  The general data trends included gender, college degree, confidence and 

profile.  Once demographic groups were distinguished, they were analyzed on time and 

actions in a search for statistical differences leading to trends.  Significant differences 

were determined by two sample t-tests and a single factor analysis test at a 95% 

confidence level. 

Their analysis involved significance testing, regression modeling, and weights of 

evidence (WOE).  WOE uses a scoring system to test the ability of the model to 

accurately predict a demographic characteristic of a user.  The scoring system is created 

by splitting characteristics such as time into separate ranges, finding the probability of a 

user’s action falling into one of the ranges conditional on an observation, and calculating 

a logodds score.  The WOE technique has been successful in credit scoring to predict 

behavioral patterns for lenders. 



27 

2.5 Summary 

This chapter discussed some of the major influences in behavioral modeling and 

prediction.  It also outlined techniques to determine applicable data sets, mine useful 

information from text, and determine relationships between documents.  The remaining 

chapters describe the methodology required to identify, characterize, and cluster search 

histories, as well as the analysis of the results. 
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III. Data Attributes and Pre-Processing 

3.1 Problem Definition 

The average American spends nearly 3 hours a day on the Internet [8] - checking the 

weather, fantasy football stats, and countless other things.  The Internet has become part 

of the daily routine, the communication and information medium of choice, because it 

puts answers at our fingertips to questions we have not yet asked. 

What are people searching for on the Internet? What questions are they asking?  Is 

it possible to categorize or classify searches to gain knowledge about behavioral intent?  

In other words, is it possible to determine real-world events based strictly on cyber 

behavior?  This exploratory research was conducted over a 12 month period to lay the 

groundwork for a system capable of clustering the online search histories of users and 

identifying individuals at-risk for suicide. 

This chapter discusses the approach taken to explore patterns in online search 

queries across nine Air Mobility Command (AMC) Air Force Bases in North America 

over the course of 32 days, from 7 November to 7 December 2011.  At a macro-level, this 

research effort explores the relationship between cyber and real-world behavior by 

identifying, classifying, and analyzing the online search query histories of individual 

users in order to cluster users who exhibit similar search patterns.  Once these search 

histories are classified and clustered, specific topics are targeted to determine if 

relationships exist and what knowledge can be gained about the real world from these 

cyber-indicators.  It is important to note this research respects the privacy of the users by 

associating search histories to IP addresses instead of specific users. 
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3.2 Data Attributes 

The AMC bases from which the proxy logs were acquired are responsible for the 

worldwide cargo and passenger delivery, air refueling, and aero-medical evacuation.  

Although the specific mission varies by installation, the AMC mission is to provide 

global air mobility – right effects, right place, right time.  The users generating the search 

queries represent roughly a quarter of the more than 134,000 active-duty, Air National 

Guard, Air Force Reserve, and DOD civilians responsible for making AMC’s rapid 

global mobility operations possible. 

3.3 Data Acquisition 

Air Force bases are responsible for logging the traffic on their servers [49].  This data is 

stored in one of two centralized locations called Integrated Network Operations and 

Security Centers (I-NOSCs), as depicted in Figure 4.  The I-NOSCs store several 

different logs, including: Aruba, Cisco, firewall, ironmail, proxy, and proxy system logs.  

This research focuses on the proxy logs, as they contain the outgoing HTTP GET 

messages for every user on the base. 

 

Figure 4. Proxy log data is uploaded to the I-NOSC for centralized storage 
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3.4 Sampling Strategy 

Since specific Air Force bases are used in this research, a non-probability 

purposive sampling strategy is employed.  Specifically, the convenience data-set used for 

analysis was derived from a non-proportional quota sampling procedure.  In this method, 

a minimum number of search histories are collected for each Air Force base. 

3.4.1 Sampling Frame 

The category for collection is a single entity that acts as a gateway for all ingress 

and egress Internet traffic for a collection of IP’s.  The conditions of having numbers that 

match the proportions in the population are not paramount.  Instead, there needs to be 

enough samples from each category to assure that relative representativeness for even 

small groups in the population.  This method is the non-probabilistic analogue of 

stratified random sampling in that it is typically used to assure that smaller groups are 

adequately represented in the sample. 

3.4.2 Sampling Selection 

In order to have an adequate sample set, the server logs from nine Air Force Bases 

were collected for a contiguous 32 day period.  The bases represented in the sample are: 

Charleston, Dover, Grand Forks, Little Rock, MacDill, McConnell, McGuire, Scott, and 

Travis. 

The steps required to obtain the historical data logs for this research are outlined 

in Figure 5.  Each base uploads its logs daily to the I-NOSC.  The logs are downloaded 

from the I-NOSC to a personal computer for storage.  The logs are then filtered into the 
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desired format by creating new text files containing the data necessary for analysis.  

Finally, these new text files are used to create a search history for each unique IP address. 

 

Figure 5. Data flow from AFB logs to individual search histories by IP Address 

 

3.5 Raw Data File Format 

The logs downloaded from the I-NOSC consist of a one line entry for each outgoing 

HTTP GET message; including information on the date, time, IP address, website, and 

browser.  The logs are saved by date.  The daily logs for each location were too large for 
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a single file, requiring multiple files per day by location to be stored.  Each GET message 

is categorized according to the BlueCoat Proxy into one or several of the 84 categories 

listed in Appendix A.  One function of the BlueCoat proxy is to categorize billions of 

web pages into useful categories that can easily be managed by IT administrators.  Note 

that since this research focuses on changes in online search patterns, it is only concerned 

with messages that are categorized as Search Engines/Portals. 

3.6 Data Pre-Processing/Cleaning 

3.6.1 Phase 1 

Since this research focuses on changes in online search patterns, the only relevant 

GET messages are those categorized as Search Engines/Portals.  Therefore, each log is 

parsed by a Perl script which saves those messages to a new file.  This script is included 

in Appendix B.1.  This new file uses the name of the original (i.e., pre-parsed file) with 

“_Searches” appended to the end (hereafter referred to as Search Logs).  This process is 

depicted in Figure 6.  In order to ensure the quality of the parsed data, the Perl script was 

tested on a proxy log with fewer than 100 lines so the output could be visually verified. 
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Figure 6. Phase 1 process to create Search Logs 

3.6.2 Phase 2 

Each of the Search Logs is processed through another filter written in Perl, which 

separates the actual searches from every GET message categorized by the BlueCoat 

proxy as “Search.”  This filter is included in Appendix B.2.  Other metadata of interest 

includes the date, client IP, client-server category, the client-server referrer, the router-

server content type, the client-server URI-path, and the client-server URI-query.  The 

client-server referrer identifies which search engine is being queried.  The content type 

distinguishes between web-pages and other web-content.  The client-server URI-path 

ensures that it is a search, and the client-server URI-query is the search-query itself. 

 Figure 7 shows this process in detail.  The filter traverses each Search Log in the 

directory, reading the GET message and performing several checks to ensure the message 

represents an actual search.  Actual searches have the following attributes: content type of 

HTML, URI path labeled search, and referrer with the name of a search engine.  If any of 
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the checks fail, the filter moves to the next GET message.  If the GET message has each 

of the required attributes, it is written to a new file.  This aggregate file contains the 

online search history for the given location for the entire period of the data-set in 

chronological order. 

 

Figure 7. Phase 2 filter, which writes the actual searches from the daily Search Logs to a 
single file representing the searches from a given base for the entire month 
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After this process is performed for each location, there are nine Search Logs containing 

all the data required to complete the remainder of the research.  This time, the Perl script 

was tested on a Search Log with fewer than 100 lines categorized as “Search” so the 

output could be visually verified. 

3.6.3 Phase 3 

Each of the logs are then processed by another Perl script, which outputs a file for 

each IP Address, containing the online search history for that IP throughout the entire 

month.  This code is included in Appendix B.3.  Figure 8 describes this flow. 

 

Figure 8. Phase 3 filter, creating a search history for each IP address 

 
The search query is contained within the cs_uri_query field of each GET message.  In 

order to parse the search query from the cs_uri_query field, the filter progresses through 

several steps which are outlined in Figure 9.  Depending on the referrer, the filter parses 

different portions of the cs_uri_query.  Regardless, the string passed to the subroutine 

responsible for cleaning and printing the actual search query contains an extra character 

on the back-end, which the filter removes.  This extra character represents the end of the 

search query.  In order to standardize all search queries, the filter converts the text to 
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lower-case, hex to ASCII, and removes punctuation and extra whitespace on the front and 

back-ends.  In order to ensure the search queries are filtered correctly, the filter was 

tested on multiple URI queries from each search engine found within the data set. 

 

Figure 9. Process to filter and clean the actual search queries from the URL 

 
Figure 10 provides an example search history file output by the filter.  When the process 

is complete, a unique search history file is saved for each unique IP address, and contains 

the search queries for the user. 

 

Figure 10. Example Search History 

 
In order to ensure the quality and consistency of data, there are several criteria 

each search history document must meet before being included in the analysis.  First, the 

document must contain a minimum of three lines representing three valid searches.  Less 
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than three searches is not sufficient information to derive behavior.  In order for a search 

to be considered valid, it must contain English word(s).  Searches made up exclusively of 

numbers or words from another language are also excluded, as they do not provide a 

sufficient representation to derive behavior. 

3.7 Base Analysis 

Once the data is in the desired format, diagnostics are conducted to gain an understanding 

of what is included in the data.  Several features are calculated, including the total 

number of searches, average number of searches per day, the total number of unique IP 

addresses, the average number of searches per IP, the total number of search terms, and 

the average number of search term per search.  Table 1 provides the data attributes, per 

base, for the period of the data set. 

For example, the Charleston AFB had 32 days worth of proxy search logs for 

analysis.  The total number of searches was 60,690 throughout the 32 days, which 

averaged out to 1,897 searches per day.  There were 2,655 unique IP address responsible 

for generating the total number of searches, thus the average number of searches per IP 

address computed to 23.  The total number of search terms was 214,430.  Dividing the 

number of search terms by the total number of searches provides an average of four 

words per search for Charleston. 
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Table 1. Data attributes for each of the nine AFBs 

 

3.8 LDASOM 

Retrieving information from large collections of text documents can be aided through 

clustering and visualization.  Previous research has been conducted on a clustering and 

visualization method based on Latent Dirichlet Allocation and self-organizing maps 

(LDASOM) [42].  The data is in the necessary format for evaluation – one month-long 

search history for each of the over 24K unique IP addresses. 

Figure 11 provides a top-level depiction of how LDASOM works.  The search 

histories are all saved in a single folder, which is read by LDASOM.  LDASOM 

implements a probabilistic topic model to cluster documents, rendering them in an 

intuitive graphical two and three-dimensional format.  In order to maintain the 10:1 

dimensionality recommended for LDA, the number of topics is set to 300 [50]. 
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Figure 11. Top-level flowchart for LDASOM 

 

3.8.1 Topic Analysis 

The 300 topics determined by LDASOM are included in Appendix C.  These 

topics describe the words most likely to be found in the same search history by 

calculating the probability of their occurrence throughout all the search histories in the 

sample set.  They are represented similar to definitions in a dictionary and are simply a 

string of the words best representing the words most often found together through the 

search histories. 
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For example, topic 22 is defined as: “calendar santa holidays rose candy julian 

boot nuclear claus dec.”  This topic describes search histories which included search 

queries about the holidays.  Because the topic list is saved as a text file, it can quickly be 

searched for interesting terms.  For example, a search for the word divorce produces a hit 

in topic 5, “park child divorce support laws coloring masks suicide knives comic.”  

Divorce is most likely found in search histories which also contain searches for the other 

words in the topic. 

 
3.8.2 Cluster Analysis 

Once LDA is finished computing the probabilities for all the search histories 

relative to the topics, LDASOM clusters the search histories using self-organizing maps.  

The topology preserving properties of SOMs ensures that documents with similar topic 

distributions are clustered near one another.  While each of the 300 topics computed by 

LDA includes probabilities for each of the 24K documents, the SOM clusters with a 1:1 

matching of document to cluster, ensuring mutual exclusion between clusters. 

SOMs are a form of unsupervised neural network capable of grouping the input 

data so that those with similar features are mapped to the same or neighboring clusters. 

The SOM provides a visual approach to represent search histories the algorithm 

determined are related, without any human interaction. Each cluster shows the top three 

topics, based on the topic distribution for each document within the cluster. It is possible 

to see exactly which search histories are included within a cluster by clicking on it.  Code 

was added to LDASOM which made it possible to export the names of the files within 

the cluster to a separate text file.  This process is completed for each cluster, and these 
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text files are saved to the same folder.  At this point, the folder contains a text file for 

each cluster, containing the names of the search histories included in it.  Together, these 

cluster files contain the names of every one of the 24K IPs. 

The SOM in Figure 12 provides a 3D visual representation of how the search 

histories were clustered based on topic probability.  The number on each cluster is the ID 

number for each cluster and is provided as output from LDASOM.  Note that the ID 

number is for cluster identification only and does not imply any attributes associated with 

classifying the data.  In addition to the ID number, clusters can also be distinguished by 

color.  The elevation of a cluster represents the number of search histories included in 

that cluster – the higher the elevation, the greater the number of search histories.  Each 

search history is associated with only in one cluster in the SOM landscape. 

 

Figure 12. SOM generated by LDASOM for +24,000 valid search histories 

 
The next step involves analyzing the search histories in each cluster.  The total 

number of search histories, searches, and average number of searches per document are 
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calculated and shown in Table 2.  For example, ClusterID0 contained 2,058 unique 

search histories.  Those search histories contained 46,917 searches, for an average of 23 

searches per search history.  Descriptive analysis is also conducted to determine how 

each geographical location is represented within each cluster.  Within ClusterID0, 

Charleston AFB had 275 search histories, Dover had 153, Grand Forks had 66, Little 

Rock had 224, MacDill had 294, McConnell had 134, McGuire had 371, Scott had 333, 

and Travis had 208. 

There are a few interesting observations worth noting.  For example, ClusterID11 

is dominated by search histories from Travis AFB in California.  The top three topics 

based on probability for that cluster were topic 200 (53.48%), topic 229 (9.10%), and 

topic 274 (8.88%).  Topic 200 has a significantly higher probability than the next two 

highest topics.  Topic 200 is “ca vacaville fairfield sacramento vallejo solano suisun 

kaiser walnut Roseville.”  A majority of search histories in ClusterID16 are also from 

Travis, and once again, the highest topic probability is topic 200 (43.48%). 
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C1usterlD Docs Searches 
Avq Docs per Air Force Base 

Searches/Doc Char1eston Dover Grand Forks Litt1e Rock MacDi11 McCoJme11 McGuire Scott Travis 

C1usterlDO 2058 46917 23 275 153 66 224 294 134 371 333 208 

C1usteriDlO 2962 53438 18 373 305 155 282 286 245 456 561 299 

C1usterlDll 113 1969 17 2 2 0 2 0 1 2 2 102 

C1usteriD15 7474 1292 64 17 819 764 278 698 773 546 1210 1521 865 

C1usteriD16 317 6320 20 14 14 5 27 21 5 19 37 175 

C1usteriD17 2582 48785 19 328 327 91 284 261 140 506 405 240 

C1usteriD18 845 13658 16 46 58 17 72 61 so 126 96 319 

C1usteriD2 101 1851 18 5 0 1 2 2 0 6 2 83 

C1usteriD20 2547 52412 21 303 222 101 263 251 177 406 506 318 

C1usteriD21 384 6599 17 2 1 0 2 0 1 3 6 369 

C1usteriD22 498 7262 15 23 26 13 33 35 21 33 64 250 

C1usteriD23 1182 29557 25 109 127 39 126 138 73 238 156 176 

C1usteriD24 157 4043 26 10 9 4 4 10 6 11 13 90 

C1usteriD25 178 4009 23 14 22 3 7 11 6 39 12 64 

C1usteriD3 1974 37292 19 209 201 68 228 247 126 325 298 272 

C1usteriD5 269 6227 23 35 15 3 19 32 12 51 52 so 
C1usteriD6 731 34135 47 88 75 14 70 101 34 171 88 90 

Tota1s 24372 483738 21 2655 2321 858 2343 2523 1577 3973 4152 3970 
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3.9 Summary 

The methodology described in this chapter outlines the approach used to classify search 

histories and group users with similar behaviors.  LDASOM makes it possible to 

categorize and cluster these search histories to gain knowledge about users.  The 

remainder of this thesis describes the knowledge gained as a result of analyzing the 

clustering of these search histories. 
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VI. Determining Relationships 

Chapter 3 outlined the general concepts and approach used to classify search histories 

and group users with similar behaviors.  Relationships do exist between the search 

histories of individuals – evidenced by the SOM clustering.  Chapter 4 describes the 

methodology, results, and analysis of determining relationships based on online search 

histories. 

4.1 Air Force Suicide Prevention 

The Air Force has devoted a considerable amount of resources on suicide awareness and 

prevention, spearheaded by the United States Air Force Suicide Prevention Program 

(AFSPP).  A significant portion of these resources are devoted to providing family, 

friends, and co-workers with information on identifying at-risk personnel.  AFSPP states 

that these three groups are in the best position to recognize behavioral changes, discuss 

these changes with the at-risk individual, and provide care and support [6].  Behavioral 

change in itself does not imply someone will become suicidal.  However, according to 

AFSPP, individuals exhibiting changes in one or more of the following may warrant 

close monitoring [6]: 

•  Mood 
•  Concentration 
•  Sleep pattern 
•  Energy 
•  Appetite 
•  Substance use 
•  Impulse Control 
•  Reduced capacity for enjoyment 
•  Helplessness or hopelessness 
•  Peer Relations 
•  Work Performance 
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•  Military bearing 
•  Personal hygiene and grooming 
•  Ineffective problem-solving  
 
Last year, a committee made up of members of the Uniformed Services 

University of the Health Sciences submitted their findings in the Journal of Affective 

Disorders in an article titled “Suicide in the United States Air Force: Risk factors 

communicated before and at death.”  In this article, Cox et al. [9] described how their 

project aimed at describing and evaluating the communications (i.e., verbally and in 

suicide notes) of 13 suicide risk factors in the suicide death investigation files of 98 

active duty airmen.  Their findings support the USAF emphasizing certain risk factors 

over other suicide prevention efforts.  They concluded that interpersonal risk factors 

appeared to be more salient than intrapsychic risk factors in the minds of the decedents.  

The last section of the article describes the limitations of the research – the most 

significant being that researchers must depend on previously collected information for 

analysis [9]. 

A recent article in the LA Times [51] discusses how social media serves as a 

lifeline for many members of military families – connecting them to supportive 

communities to help cope with specific strains and stresses.  Facebook, in conjunction 

with the Department of Veterans Affairs and Blue Star Families, has unveiled a lifeline 

from within their website that includes informational and response tools customized for 

service members and their families.  This new tool enables those connected to veterans or 

active-duty military and their families, to obtain specific information about crisis services 
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tailored to the military.  These services include the Veteran’s Crisis Line, which can 

respond over the phone, through online chat, or by text message. 

4.2 Cyber Indicators 

The initiatives on analyzing both real-world and cyber indicators of suicide raise a 

question worth answering.  Is it possible that similar factors exist within cyberspace that 

do not necessarily mean an individual is suicidal, but may warrant close monitoring?  If 

so, what are these factors and how can they be monitored?  The simplest method is a 

dirty-word search – where individuals who search n-times for blacklisted term(s) are put 

on watch.  Unfortunately, this type of system is one-dimensional.  Doctors in Taiwan 

conducted a research effort along these lines, when they examined search query data from 

2004 through 2009 for trends in searches related to suicide.  They compared the 

frequency to truth data provided by the State and found a relationship between increases 

in suicide related searches and failed/successful suicides [14]. 

Despite its one-dimensionality, search query analysis could have a significant 

impact on the most significant limitation in traditional suicide research – a dependence on 

previously collected data [9] – if conducted in real-time.  However, an even greater 

impact may be made by adding a second dimension – clustering the online search 

histories of users and identifying relationships with at-risk individuals. 

4.3 Disorder Determination 

In order to determine which search histories should be targeted, a professional 

psychologist was asked to provide a list of suicide-related disorders.  This list consisted 
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of anxiety, depression, PTSD, stress, and suicide.  A dictionary was constructed for each 

disorder, made up of words associated with each.  In order to make the dictionaries more 

sufficiently exclusive, terms associated with Stress Disorders were combined with PTSD 

and terms associated with Depression Disorders were combined with Suicide.  The 

dictionaries were sufficiently exclusive, though not exhaustive.  The following sections 

describe each disorder and the words included in each dictionary. 

4.3.1 Anxiety Disorder 

Anxiety disorder is a general term used for many different forms of abnormal or 

pathological anxieties, fears, and phobias.  Although fear, anxiety and phobia are often 

used interchangeably in conversation, clinically they have different meanings.  Anxiety is 

described as an unpleasant emotional state [52].  Unfortunately, the causes can be 

difficult to identify.  In order to receive effective treatment and a better prognosis, it is 

important to distinguish between different anxiety disorders. Anxiety disorders are the 

most common psychiatric illness affecting both children and adults and are frequently 

accompanied by physiological symptoms that may lead to fatigue or even exhaustion 

[52].  The dictionary provided in Table 3 shows which words and compound words were 

used to filter search queries related to anxiety. 
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Table 3. Dictionary of words associated with anxiety disorders 

 

4.3.2 Post-Traumatic Stress Disorder (PTSD) 

Stress is the body's normal response to anything that disturbs its natural physical, 

emotional, or mental balance. Everyday stressors can be managed with healthy stress 

management behaviors, but untreated chronic stress can result in health conditions 

including anxiety, insomnia, muscle pain, high blood pressure and a weakened immune 

system [53].  Chronic stress is known to contribute to anxiety and depression, which 

greatly increases the risk for heart disease [54].  Additionally, people exposed to chronic 

stress are at a heightened risk of developing a drug addiction [55].  If a high stress level 

continues for a long period of time, it is important to reach out to a licensed mental health 

professional [56]. 

Post-Traumatic Stress Disorder affects thousands of veterans by causing the brain 

to sense stress and danger regardless of the situation and at unexpected times [57].  

Symptoms include: 

• Flashbacks 
• Bad dreams 
• Frightening thoughts 
• Avoiding places, events or objects that are reminders of the traumatic event 
• Feeling emotionally numb 
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• Feeling strong guilt, depression or worry 
• Losing interest in activities that were enjoyable in the past 
• Having trouble remembering the traumatic event 
• Being easily startled 
• Feeling tense or on edge 
• Having difficulty sleeping 

According to the National Institute of Mental Health, a person must have all of the 

following symptoms for at least one month in order to be diagnosed with PTSD [57]: 

• At least one re-experiencing symptom 
• At least three avoidance symptoms 
• At least two hyperarousal symptoms 
• Symptoms that make it hard to go about daily life, go to school or work, be with 

friends or family, and take care of important tasks 

The dictionary provided in Table 4 shows which words and compound words were used 

to filter search queries related to PTSD. 

Table 4. Dictionary of words associated with PTSD 

 

4.3.3 Suicide 

Depression is a serious medical illness where long-lasting feelings of sadness, 

anger, loss, or frustration get in the way of life.  Clinical depression is categorized from 

mild to severe and symptoms include [58]: 

• Difficulty sleeping or too much sleeping 
• Fatigue and lack of energy 
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• A drastic change in appetite, accompanied by weight gain or loss 
• Self-loathing and low self-worth 
• Trouble focusing 
• Feeling exasperated and helpless 
• Anxiety 
• Restlessness 
• Agitation 
• Inactivity and detachment 
• Frequent thoughts of suicide 

Unfortunately, many people with a depressive illness never seek treatment [59].  

Depression is considered a common but serious illness, and most people who experience 

depression require treatment in order to get better.  Research indicates that depressive 

illnesses are disorders of the brain, and are most likely caused by a combination of 

genetic, biological, environmental, and psychological factors [59]. 

Many symptoms of depression are indicators for individuals at-risk for suicide 

[6].  Suicide is the second leading cause of death, after accidents, among active duty U.S. 

military members [60].  The Department of Veterans Affairs provides the following 

suicide warning signs: 

• Talking about wanting to hurt or kill oneself  
• Trying to get pills, guns, or other ways to harm oneself  
• Talking or writing about death, dying, or suicide  
• Hopelessness  
• Rage, uncontrolled anger, seeking revenge  
• Acting in a reckless or risky way  
• Feeling trapped, like there's no way out 
• Saying or feeling there's no reason for living 
• Calling old friends, particularly military friends, to say goodbye  
• Cleaning a weapon that they may have as a souvenir  
• Visits to graveyards  
• Obsessed with news coverage of the war, the military channel  
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• Wearing their uniform or part of their uniform, boots, etc  
• Talking about how honorable it is to be a soldier  
• Sleeping more (sometimes the decision to commit suicide brings a sense of 

peace of mind, and they sleep more to withdraw)  
• Becoming overprotective of children  
• Standing guard of the house, perhaps while everyone is asleep staying up to 

"watch over" the house, obsessively locking doors, windows  
• If they are on medication, stopping medication and/or hoarding medication  
• Hoarding alcohol -- not necessarily hard alcohol, could be wine  
• Spending spree, buying gifts for family members and friends "to remember 

them by"  
• Defensive speech, "you wouldn't understand"  
• Stop making eye contact or speaking with others 

The dictionary provided in Table 5 shows which words and compound words were used 

to filter search queries related to suicide. 

Table 5. Dictionary of words associated with suicide 
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4.4 Disorder-Related Searches 

After building the dictionaries, a Perl script is used to filter each of the 24K search 

histories for search queries which include a term from one or more of the dictionaries.  

The filter begins by loading a search history and analyzing each search query.  If the 

query contains a word(s) from a disorder dictionary, the name of the search history is 

written to a text file saving the names of all search histories that searched for that 

disorder.  These text files are named AnxietyIPs.txt, PTSDIPs.txt, and SuicideIPs.txt.  In 

addition to the name of the search history, the number of search queries containing 

disorder-related terms is saved as well. 

If a search history includes terms from multiple disorders, the name of the search 

history is saved to the disorder with the majority of hits.  In the case that terms from 

multiple disorders are searched for the same number of times, the name of the search 

history is randomly assigned to one of the disorders tied for the highest term hit count.  

This process is outlined in Figure 13 and the Perl script used to execute this filter is 

included in Appendix B.5. 
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Figure 13. Determining search histories which contain disorder-related searches 

4.5 Contingency Tables 

The disorder IP text files provide the first dimension of analysis by saving the IPs which 

have performed searches related to the given disorders.  In order to get to the second 

dimension, it is necessary to determine where these search histories are clustered within 

the SOM.  This is accomplished through contingency tables where the rows represent the 
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clusters, while the columns represent the searches for each disorder.  These tables are 

used to complete the analysis and evaluation portion of the research, and allow for the 

calculation of a chi-square (χ2) statistic. 

Figure 14 describes how the Perl script accomplishes the tasks necessary to build 

the contingency tables.  The names and counts of the search histories are read from the 

disorder IP files, and loaded into an array for each disorder.  The program then opens a 

cluster text file, which contains the name of every search history included in the cluster.  

If the name of the search history in the cluster text file is also included in one of the 

disorder IP files, the number of disorder-related hits associated with that search history is 

added to the total number of disorder-related hits for that cluster.  This process continues 

until every search history in every cluster has been checked against the search histories 

with disorder-related searches.  Once completed, the program outputs a comma-

delimited-file containing the counts for the disorder-related searches for each cluster.  

The Perl script responsible for performing this analysis is in Appendix B.6. 
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Figure 14. Process to find disorder-related search histories within the SOM clusters 

 
Table 3 is the output from the cluster analysis just described.  The numbers in the 

columns represent the number of searches for the given disorder within the given cluster.  

The totals on the right are the total number of disorder related searches within the given 

cluster.  The total in the last row are the total number of searches for each disorder, across 

all clusters. 
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Table 6. Observed Frequency with 3 disorders and 17 clusters 

 

4.6 Analysis and Evaluation Technique 

The primary analysis technique is the Chi-square statistic. This is a non-parametric 

technique. A chi-square (χ2) statistic is used to investigate whether distributions of 

categorical variables differ from one another by testing for independence and not a 

goodness-of-fit.  The observed and expected frequencies play an important role in the χ2 

calculation.  The results of the independent test state whether a relationship exists, but not 

how strong the relationship is.  The hypothesis for this study is: 

• H0: The clusters and disorder categories are independent (i.e., there is no 
relationship between the clustering and the disorder-related searches) 

• Ha: The clusters and disorder categories are not independent (i.e., there is a 
relationship between the clustering and the disorder-related searches) 
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4.7 Combining Clusters 

The first step after generating the observed frequency table is to eliminate any rows with 

straight zeros, since those clusters contain no search queries with disorder-related terms.  

Within Table 3, clusters 11, 22, and 24 all contain zero disorder-related searches.  Table 4 

shows the reduced observed frequency table with those clusters removed. 

Table 7. Observed frequency with clusters 11, 22, and 24 removed 

 

At this juncture, the expected frequency table can be computed.  Each cell in the 

expected frequency table (Eij) is calculated by multiplying the marginal row total (ri) with 

the marginal column total (cj), and dividing the result by the sum of all disorder-related 

searches (n): 

𝐸𝑖𝑗 =  
𝑟𝑖  ×  𝑐𝑗
𝑛

 (Eq. 4) 
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 This process is continued until every cell in the contingency table is calculated.  

Table 5 represents the expected frequency table calculated using the observed values 

from Table 4. 

Table 8. Expected frequency with clusters 11, 22, and 24 removed 

 

Once the expected frequency table is in place, a few diagnostics must be made 

about the values within the cells before moving forward to analysis.  First, in order to rely 

on the results of the χ2, no more than 20% of the values in contingency table can be less 

than 5.  Second, no cell can have a value less than 1 since it will be used as a denominator 

in the next calculation.  Currently 62% of the values are below 5, much higher than the 

20% maximum required to ensure a reliable χ2-test statistic.  Additionaly, five of the 

values in the contingency table are less than 1.  Two options are available to remedy 

these problems – either combine disorders along the x-axis or cluster’s along the y-axis. 
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With only three disorders along the x-axis, it is unreasonable to combine disorders 

any further.  Therefore, it was necessary to begin combining clusters in order to get the 

expected values less than 5 below the 20% ceiling.  Every cluster was compared to its 

surrounding clusters by comparing the top three topic probabilities for each of the 

clusters.  Figure 15 shows these comparisons.  The left-most column contains the Cluster 

ID, as well as the number of disorder-related hits within that cluster.  The next three 

columns represent the top three topic probabilities for that cluster.  The remaining 

columns are for top three topic probabilities of the clusters that share a side with the 

cluster in the first column.  Highlighted topic numbers represent a match.  The cluster in 

the first column was combined with the cluster(s) highlighted its top three topic 

probabilities.  

Since the goal of combining clusters is to minimize the number of values less than 

5, clusters with the fewest number of disorder-related searches were targeted.  For 

example, ClusterID2 only had two disorder-related searches.  Its top three topics were 

Topic 200 (35.3%), Topic 138 (9.35%), and Topic 289 (7.89%).  ClusterID2 shares a side 

with clusters 5, 10, 16, 20, and 21, as seen in Figure 16.  Although ClusterID2 also shares 

a side with ClusterID11, it was excluded since it did not contain any disorder-related 

searches.  The probabilities for the top 3 topics for each of the other clusters were 

compared to those for ClusterID2.  The top 3 topics for ClusterID10 matched those of 

ClusterID2, so they were combined. 
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Figure 15. Clusters and their top three topic probabilities 
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Figure 15. (continued) Clusters and their top three topic probabilities 

The white lines outlining the clusters in Figure 16 show which clusters where 

combined once this first round of combinations was complete.  Cluster 5 was combined 

with 0 (ClusterID0_5), clusters 2 and 20 with 10 (ClusterID10_2_20), clusters 16, 25, 
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and 21 with 18 (ClusterID18_16_25_21), and cluster 23 with 6 (ClusterID6_23).  Table 6 

provides the updated observed frequency table. 

 

Figure 16. SOM with lines showing where clusters were combined 

 
Table 9. Updated observed frequency table 

 

The values from Table 6 are used to compute the updated expected frequency 

table, provided in Table 7.  This process of combining clusters and calculated new 
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expected frequency tables continues until no more than 20% of the values are below 5, 

and no values are less than 1.  At this point, 24% of the values are less than 5.   

 
Table 10. Updated expected frequency table 

 

Figure 17 shows the updated SOM cluster after the next round of combinations, 

where ClusterID0_5 is combined with ClusterID17 (ClusterID17_0_5).  Tables 8 and 9 

depict the updated observed and expected frequency tables. 

 

Figure 17. SOM with lines showing updated cluster combinations 
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Table 11. Updated observed frequency table 

 

Table 12. Updated expected frequency table 

 

Once again, the number of cells less than 5 in the expected frequency table is 

counted.  At this point, 14% of the values are less than 5, below the 20% limit, and it is 

now possible to calculate the χ2 test statistic to determine whether a relationship exists 

between the clusters and the IPs which searched for the disorders. 

Each cell in the χ2 test statistic is calculated by taking the square root of the 

observed value (oi) minus the expected value (ei) over the expected value.  These values 

are then summed together to get the observed χ2 value. 
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Table 10 shows the table for the χ2 test statistic.  When the value from each cell is 

summed together, the χ2 value is calculated at 28, as seen in the bottom-right cell of the 

table. 

Table 13. χ2-test statistic 

 

In order to determine whether a relationship exists between the clustering 

produced by LDASOM and the disorder-related searches, a few more steps must be 

executed.  The degrees of freedom (df) are computed by taking one less than the number 

of rows times one less than the number of columns.  With six row and three columns, the 

df is calculated at 10.  In order to find the critical value, a χ2-test lookup table is 

referenced with an α of .05 and 10 df.  The alpha is equated with the p-value, which is the 

(Eq. 6) 

(Eq. 5) 
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probability of calculating a test statistic at least as extreme as the observed, assuming the 

null hypothesis is true.  Table 11 shows a partial χ2-test lookup table [61]. 

Table 14. χ2-test table with alpha of .05 

 

As stated in section 4.6, the hypothesis of this research is: 

• H0: The clusters and disorder categories are independent (i.e., there is no 
relationship between the clustering and the disorder-related searches) 

• Ha: The clusters and disorder categories are not independent (i.e., there is a 
relationship between the clustering and the disorder-related searches) 

If the calculated χ2 value is less than the critical χ2, than the null hypothesis is accepted - 

the clusters and documents are independent and no relationship exists.  However, the 

calculated χ2 (28) is greater than the critical (18.31) as referenced in the table.  Thus the 

null hypothesis is rejected and it can be assumed with a greater than 95% confidence (α = 

.05) that a relationship does exist between the clustering and the targeted search queries. 

4.8 Cramer’s V  

Cramer’s V is useful for comparing multiple χ2 test statistics and is generalizable across 

contingency tables of various sizes.  It is useful in situations where suspicions exist that a 
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statistically significant χ2 was the result of large sample size instead of any substantive 

relationship between the variables, since it is not affected by sample size.  Cramer’s V is 

a measure of the relative strength of an association between two variables, with a 

coefficient between 0 to 1, where 1 represents perfect association. 

 

𝑉 =  �
𝜒2

𝑛(𝑞 − 1)
   𝑤ℎ𝑒𝑟𝑒 𝑞 = 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 # 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

A Cramer’s V greater than .5 suggests a high association, .3-.5 moderate, .1-.3 

low, 0-.1 little if any.  These coefficients represent the general case, as in practice a 

Cramer's V of .10 may provide a good minimum threshold for suggesting there is a 

substantive relationship between two variables [62].  The calculated Cramer’s V derived 

from the calculated χ2 was .22, implying the strength of the association is low according 

to Table 12. 

Table 15. Cramer's V characterizations 

 

However, an article in the 7 May 2012 edition of the Air Force Times highlighted 

the recent spike in the number of suicides and included statistics on the number of 

suicides per Air Force Base since 2003 [63].  The suicide totals per base are graphed in 

Figure 18.  The suicide totals for the bases used in this research occur around the middle 

of the data set.  Furthermore, the average number of suicides across all bases was 5.75, 

(Eq. 7) 
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while the average number of suicides across the nine bases used in this study was 5.86.  

These facts provided additional confidence that the data used in this research is 

representative of the population. 

 

Figure 18. Air Force suicide totals since 2003 
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4.9 Patterns in Clusters 

After analyzing the documents within the clusters, the next step is analyzing where the 

search histories that contained disorder-related searches fell across the SOM.  Table 13 

shows the clusters ranked from highest number of disorder-related searches to lowest.  

When those values are attributed to the clusters in which they occur, it is clear that most 

of the documents containing disorder-related searches were clustered in the top left of the 

SOM.  The white line in Figure 19 outlines the six clusters with the highest number of 

disorder-related searches. 

 
Table 16. Clusters from high to low based on number of disorder-related searches 
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Figure 19. The six clusters containing the most disorder-related searches 

 
Clusters 0, 3, 10, 15, 17, and 20 account for 76% of the total searches, and contain 

82% of the disorder-related searches.  The next five clusters containing the most disorder-

related searches are located in the bottom-right of the SOM – clusters 6, 18, 21, 23, and 

25.  Once those values are included, these 11 clusters account for 94% of the total 

searches, and 98% of the disorder-related searches.  The white line in Figure 20 outlines 

the two mega-clusters responsible for a majority of the disorder-related searches. 
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Figure 20. The 11 clusters containing the most disorder-related searches 

4.10 Evaluation  

The rejection of the null hypothesis in the χ2-test statistic is a significant result – it is 

possible to state with greater than 95% confidence that a relationship does exist between 

the clustering and the disorder-related searches.  This is supported further by the analysis 

of SOM itself, and the location of the majority of the disorder-related searches in such a 

small number of clusters. 
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V. Conclusions and Future Work 

5.1 Conclusions 

Extensive research has been conducted on predicting future actions based on real-world 

behavioral changes [15].  These indicators provide clues to the attitudes and perceived 

behavioral control of an individual.  As society has become more dependent on the 

Internet for information [8], it is logical to assume that cyber-behavior can provide 

indicators as well – and not just for future actions in cyberspace.  If Google Flu Trends 

can accurately correlate search queries related to flu symptoms to the number of people 

going to the doctor with the flu, what other cyber-indicators can be exploited? 

This research determined that it is possible for software to sufficiently identify 

relationships between individuals searching for terms related to three different disorders – 

anxiety, PTSD, and suicide.  The calculated χ2-test statistic exceeded the χ2 critical value 

at α = .05, thus rejecting the null hypothesis that the clustering produced by the 

LDASOM was independent of the targeted search queries. 

5.2 Future Work 

Significant insight could be provided by working with the Air Force’s Surgeon General’s 

office to obtain the search histories of individuals who have been diagnosed with these 

disorders or who have committed suicide.  The trends found in those search histories 

could greatly increase the reliability and predictability of an “Early Warning Radar” 

based on cyber indicators. 
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Furthermore, a larger data set covering more geographical locations and a longer 

time period would provide much more robust search histories.  It would also better 

represent the actual population.  An extended time period (e.g., 18 months) would make 

trend analysis a possibility. 

Significant work should be done to ensure the disorder dictionaries are as 

mutually exclusive as possible and should be coordinated with a professional team of 

psychologists.  This also includes concerns about false positives/negatives.  False 

positives would include individuals searching online for information or help for a friend, 

family member, etc.  False negatives would include users with or at-risk for the disorders, 

but who’s search history did not include any disorder-related search queries. 

Finally, the accuracy of the system could be bolstered by having a panel of 

psychologists review the search histories of those individuals who searched for the terms 

related to the disorders, and have them sorted into piles of concerned, not concerned, and 

highly concerned.  After performing some inter-rater reliability tests, examine how 

LDASOM clustered those documents compared to the professionals. 

5.3 Relevance of Work 

Traditional research for these disorders, especially suicide, is conducted with a limited 

number of cases on data gathered after the fact and requires a substantial amount of 

human involvement [9].  This research lays the foundation for a system capable of 

predicting groups of people at a higher risk for suicide or other serious disorders by 

analyzing search histories – an indicator not yet examined.  This is significant because 

this analysis can be conducted in real-time and is scalable to incredibly large populations 
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of users.  Furthermore, the clustering produced by LDASOM identifies relationships 

between users who are conducting disorder-related searches and users who are not.  As 

research progresses on this topic, it may be possible to develop a system capable of 

identifying high-risk groups before tragedy hits. 
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Appendix A.  BlueCoat Proxy Categories 

 

 

 

  

Abortion  Government/Legal  Phishing  
Adult/Mature Content  Greeting Cards  Placeholders  

Alcohol  Hacking  Political/Activists Groups  
Alternative Sexuality/Lifestyle  Health  Pornography  
Alternative Spirituality/Belief  Humor/Jokes  Potentially Unwanted Software  

Art/Culture  Illegal Drugs  Proxy Avoidance  
Auctions  Informational  Radio/Audio Streams  

Audio/Video Clips  Internet Telephony  Real Estate  
Blogs/Personal Pages  Intimate Apparel/Swimsuit  Reference  

Brokerage/Trading  Job Search/Careers  Religion  
Business/Economy  Lesbian/Gay/Bi-sexual/Transgender   Remote Access Tools  

Charitable Organizations  Malicious Outbound Data/Botnets  Restaurants/Dining/ Food  
Chat/Instant Messaging  Malicious Sources  Scam/Questionable/ Illegal  

Child Pornography  Media Sharing  Search Engines/Portals  
Computers/Internet  Military  Sex Educations  

Content Servers  News/Media  Shopping  
Dynamic DNS Host  Newsgroups/Forums  Social Networking  

Education  Non-Viewable  Society Daily Living  
Email Nudity Software Downloads  

Entertainment  Online Meetings  Spam  
Extreme  Online Storage  Sports/Recreation  

Financial Services  Open/Mixed Content  Suspicious  
For Kids  Pay to Surf  Tobacco  
Gambling  Peer-to-Peer  Translation  

Games  Personals/Dating  Travel  
TV/Video Streams  Vehicles  Web Advertisements  

Uncategorized  Violence/Hate/Racism  Web Applications  
User Defined  Weapons  Web Hosting  
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Appendix B.  Perl Scripts 

B.1 Pre-processing - Original-to-SearchLog Filter 

#!/usr/bin/perl 
use 5.010; 
use strict; 
use warnings; 
 
#************************************************ 
# The file will filter all logs in a directory, only 
# keeping those GET messages the BlueCoat Proxy 
# classified as Searches.  It is run from the 
# directory we're interested in. 
#************************************************ 
 
#************************************************ 
# Declarations to make before running program 
#************************************************ 
my $base = "Dover"; 
my $dirname = "F:\\INOSCLogs\\${base}\\11_November"; 
my $writefile; 
 
#************************************************ 
# Open directory with files to be read/written 
#************************************************ 
opendir DIR,$dirname or die "open failed : $!\n"; 
for(readdir DIR) { 
  if (/$base/i) { 
    if (/Searches/i) {} 
   else{ 
     open FILE, $_ or die $!; 
  $writefile = substr($_,0,-4); 
  open FILE2, ">" . $writefile . "_Searches" or die $!; 
   
  #************************************************ 
  # Declarations to make before running program 
  #************************************************ 
  my $line; # string representing an entire line within the log 
 
  #************************************************ 
  # loop to analyze every line in file, printing out those 

# categorized as search engines/portals 
  #************************************************ 
  while ($line = <FILE>){ 
      my $w = "(.+?)"; 
      $line =~ m/^$w $w $w $w $w $w $w $w "$w" $w $w $w $w $w $w $w 

$w $w $w $w $w $w $w $w $w "$w"/; 
 
   #************************************************ 
   # log fields 
   #************************************************ 
   my $date = $1; 
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   my $time = $2; 
   my $timetaken = $3; 
   my $c_ip = $4; 
   my $cs_username = $5; 
   my $cs_authgroup = $6; 
   my $x_exceptionID = $7; 
   my $sc_filter_result = $8; 
   my $cs_categories = $9; 
   my $cs_referer = $10; 
   my $sc_status = $11; 
   my $s_action = $12; 
   my $cs_method = $13; 
   my $rs_content_type = $14; 
   my $cs_uri_scheme = $15; 
   my $cs_host = $16; 
   my $cs_uri_port = $17; 
   my $cs_uri_path = $18; 
   my $cs_uri_query = $19; 
   my $cs_uri_extension = $20; 
   my $s_ip = $21; 
   my $sc_bytes = $22; 
   my $cs_bytes = $23; 
   my $x_virus_id = $24; 
   my $r_ip = $25; 
   my $cs_user_agent = $26; 
 
   #************************************************ 
   # line-by-line processing, printing searches to new file 
   #************************************************ 
     if ( $cs_categories =~ m/Portals/i ) { 

print FILE2 "${line}";}} 
 
  #************************************************ 
  # close files 
  #************************************************ 
  close(FILE2); 
  close(FILE);}}} 
 
closedir DIR or die "close failed : $!\n"; 
exit 0; 
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B.2 Pre-processing - Combine daily SearchLogs into monthly SearchLog 
 
#!/usr/bin/perl 
use 5.010; 
use strict; 
use warnings; 
 
#************************************************ 
# Combines a week's worth of searches into one file 
# The file is the name of the location, with  
# "_SearchLog.txt" appended to the end 
#************************************************ 
 
my $location = "";  #insert the name of the location 
open FILE_Month, ">>".$location."_SearchLog.txt" or die $!; 
 
my $dirname = "F:\\INOSCLogs\\$location\\2_DailySearchLogs"; 
my $line; 
 
opendir DIR,$dirname or die "open failed : $!\n"; 
for(readdir DIR) { 
  if (/Searches/i) { #only open daily searchlogs 
 open FILE, $_ or die $!; 
 
 #************************************************ 

# loop to analyze every line in file, printing out those categorized 
# as search engines/portals 

 #************************************************ 
   while ($line = <FILE>){ 
  my $w = "(.+?)"; 

$line =~ m/^$w $w $w $w $w $w $w $w "$w" $w $w $w $w $w $w $w $w 
$w $w $w $w $w $w $w $w "$w"/; 

 
  #************************************************ 
  # log fields 
  #************************************************ 
  my $date = $1; 
  my $time = $2; 
  my $timetaken = $3; 
  my $c_ip = $4; 
  my $cs_username = $5; 
  my $cs_authgroup = $6; 
  my $x_exceptionID = $7; 
  my $sc_filter_result = $8; 
  my $cs_categories = $9; 
  my $cs_referer = $10; 
  my $sc_status = $11; 
  my $s_action = $12; 
  my $cs_method = $13; 
  my $rs_content_type = $14; 
  my $cs_uri_scheme = $15; 
  my $cs_host = $16; 
  my $cs_uri_port = $17; 
  my $cs_uri_path = $18; 
  my $cs_uri_query = $19; 
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  my $cs_uri_extension = $20; 
  my $s_ip = $21; 
  my $sc_bytes = $22; 
  my $cs_bytes = $23; 
  my $x_virus_id = $24; 
  my $r_ip = $25; 
  my $cs_user_agent = $26; 
 
  my $ContentType = $rs_content_type; 
  my $status = $sc_status; 
  my $path = $cs_uri_path; 
  my $query = $cs_uri_query; 
  my $referer = $cs_referer; 
  my $cIP = $c_ip; 
   
  if ($ContentType =~ m/HTML/i && $path =~ m/search/i){  
    if ( $referer =~ m/google/i ) { 
   if ( $query =~ m/((&q=).*?&)/ ) {print FILE_Month $line;}} 
   elsif ( $referer =~ m/bing/i ) { 
     if ( $query =~ m/((\?q=).*?&)/ ) { 
    if ( $referer =~ m/handlers/ ) {} 
    else {print FILE_Month $line;}}} 
    elsif ( $referer =~ m/ask/i ) { 
   if ( $query =~ m/((\?q=).*?&)/ ) {print FILE_Month $line;}} 
    elsif ( $referer =~ m/yahoo/i ) { 
   if ( $query =~ m/((\?p=).*?&)/ ) { 
    if ( $referer =~ m/handlers/) {} 
    else {print FILE_Month $line;}}} 
    elsif ( $referer =~ m/lycos/i ) { 
   if ($query =~ m/((&query=).*?&)/) {print FILE_Month $line;}} 
    elsif (($referer =~ m/youtube/i) && ($referer =~ m/query/i)) { 
   if ( $query =~ m/(=.*?&)/ ) {print FILE_Month $line;}} 
    elsif ( $referer =~ m/(forecast.weather.gov)/i ) { 
   if ( $query =~ m/(=.*?&)/ ) {print FILE_Month $line;}}}}} 
 
close(FILE); 
if (/Searches/i) {print "file complete\n";}} 
 
closedir DIR or die "close failed : $!\n"; 
exit 0; 
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B.3 Pre-processing – Unique IP Counter 

#!/usr/bin/perl 
use 5.010; 
use strict; 
use warnings; 
 
#****************************************************** 
# This program counts the number of unique IP addresses 
# for a location, and also outputs each IP address 
#****************************************************** 
 
my $location = "";  #insert the name of the location 
my $dirname = "F:\\INOSCLogs\\${location}\\2_DailySearchLogs"; 
open FILE_NumOfIPs, ">" . $location . "__TotalIPs.txt" or die $!; 
open FILE_AllIPs, ">" . $location . "__AllIPs.txt" or die $!; 
 
my %UniqueIPs = (); 
my $line; 
 
#************************************************ 
# Open directory with files to be read/written 
#************************************************ 
opendir DIR,$dirname or die "open failed : $!\n"; 
for(readdir DIR) { 
  if (/$location/i) { 
 if (/Searches/i) { 
   open FILE, $_ or die $!; 
    
   #************************************************ 
   # loop to analyze every line in the log 
   #************************************************ 
   while ($line = <FILE>){ 
  my $w = "(.+?)"; 
  $line =~ m/^$w $w $w $w $w $w $w $w "$w" $w $w $w $w $w $w $w $w 

$w $w $w $w $w $w $w $w "$w"/; 
    
  #************************************************ 
  # log fields 
  #************************************************ 
  my $date = $1; 
  my $time = $2; 
  my $timetaken = $3; 
  my $c_ip = $4; 
  my $cs_username = $5; 
  my $cs_authgroup = $6; 
  my $x_exceptionID = $7; 
  my $sc_filter_result = $8; 
  my $cs_categories = $9; 
  my $cs_referer = $10; 
  my $sc_status = $11; 
  my $s_action = $12; 
  my $cs_method = $13; 
  my $rs_content_type = $14; 
  my $cs_uri_scheme = $15; 
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  my $cs_host = $16; 
  my $cs_uri_port = $17; 
  my $cs_uri_path = $18; 
  my $cs_uri_query = $19; 
  my $cs_uri_extension = $20; 
  my $s_ip = $21; 
  my $sc_bytes = $22; 
  my $cs_bytes = $23; 
  my $x_virus_id = $24; 
  my $r_ip = $25; 
  my $cs_user_agent = $26; 
   
  my $IPAddress = $c_ip; 
  my $referer = $cs_referer; 
  my $ContentType = $rs_content_type; 
  my $path = $cs_uri_path; 
  my $query = $cs_uri_query; 
   
  #************************************************ 
  # line-by-line processing 
  #************************************************ 
  if ($ContentType =~ m/HTML/i && $path =~ m/search/i){  
    if ( $referer =~ m/google/i ) { 
   if ( $query =~ m/((&q=).*?&)/ ) {$UniqueIPs{$IPAddress}++;}} 
    elsif ( $referer =~ m/bing/i ) { 
   if ( $query =~ m/((\?q=).*?&)/ ) { 
     if ( $referer =~ m/handlers/ ) {} 
     else {$UniqueIPs{$IPAddress}++;}}} 
    elsif ( $referer =~ m/ask/i ) { 
   if ( $query =~ m/((\?q=).*?&)/ ) {$UniqueIPs{$IPAddress}++;}} 
    elsif ( $referer =~ m/yahoo/i ) { 
   if ( $query =~ m/((\?p=).*?&)/ ) { 
     if ( $referer =~ m/handlers/) {} 
     else {$UniqueIPs{$IPAddress}++;}}} 
    elsif ( $referer =~ m/lycos/i ) { 
   if ($query =~ m/((&query=).*?&)/){$UniqueIPs{$IPAddress}++;}} 
    elsif (($referer =~ m/youtube/i) && ($referer =~ m/query/i)){ 
   if ( $query =~ m/(=.*?&)/ ) {$UniqueIPs{$IPAddress}++;}} 
    elsif ( $referer =~ m/(forecast.weather.gov)/i ) { 
   if ( $query =~ m/(=.*?&)/ ) {$UniqueIPs{$IPAddress}++;}}}}} 
  close(FILE); 
  print "file complete\n";}} 
 
my $NumUniqueIPs = keys %UniqueIPs; 
print FILE_NumOfIPs "${location} had ${NumUniqueIPs} Unique IPs from 7 

Nov 11 through 7 Dec 11."; 
close(FILE_NumOfIPs); 
 
foreach $NumUniqueIPs (keys %UniqueIPs){print FILE_AllIPs 
"$NumUniqueIPs\n";} 
exit 0; 
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B.4 Pre-processing - IP Filter  

#!/usr/bin/perl 
use 5.010; 
use strict; 
use warnings; 
 
#************************************************ 
# The program goes the the month-long SearchLog, creates a new file for 
# each IP address, and saves the search queries originating from that 
# IP to the file, in chronological order 
#************************************************ 
 
#************************************************ 
# Declarations to make before running program 
#************************************************ 
my $base = "Charleston"; 
my $dirname = "F:\\INOSCLogs\\$base\\2_DailySearchLogs"; 
open FILE, $base."_SearchLog.txt" or die $!; 
my $line; 
my $SearchInput; 
my $cIP; 
my $LineCount = 0; 
 
my @AllIPs = (); 
open FILE_AllIPs, $base."__AllIPs.txt" or die $!; 
  while ($line = <FILE_AllIPs>) { 
 chomp $line; 
 push(@AllIPs,$line);} 
 close(FILE_AllIPs); 
 
#************************************************ 
# loop to analyze every line in file, printing out those categorized as 
search engines/portals 
#************************************************ 
while ($line = <FILE>){ 
  $LineCount++; 
  print "$LineCount\n"; 
  
  my $w = "(.+?)"; 
  $line =~ m/^$w $w $w $w $w $w $w $w "$w" $w $w $w $w $w $w $w $w $w 

$w $w $w $w $w $w $w "$w"/; 
 
  #************************************************ 
  # log fields 
  #************************************************ 
  my $date = $1; 
  my $time = $2; 
  my $timetaken = $3; 
  my $c_ip = $4; 
  my $cs_username = $5; 
  my $cs_authgroup = $6; 
  my $x_exceptionID = $7; 
  my $sc_filter_result = $8; 
  my $cs_categories = $9; 
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  my $cs_referer = $10; 
  my $sc_status = $11; 
  my $s_action = $12; 
  my $cs_method = $13; 
  my $rs_content_type = $14; 
  my $cs_uri_scheme = $15; 
  my $cs_host = $16; 
  my $cs_uri_port = $17; 
  my $cs_uri_path = $18; 
  my $cs_uri_query = $19; 
  my $cs_uri_extension = $20; 
  my $s_ip = $21; 
  my $sc_bytes = $22; 
  my $cs_bytes = $23; 
  my $x_virus_id = $24; 
  my $r_ip = $25; 
  my $cs_user_agent = $26; 
 
  my $query = $cs_uri_query; 
  my $referer = $cs_referer; 
  $cIP = $c_ip; 
 
  if ( $referer =~ m/google/i ) { 
    if ( $query =~ m/((&q=).*?&)/ ) { 
  $SearchInput = substr($1,3); 
  &PrintSearchQuery;}} 
 elsif ( $referer =~ m/bing/i ) { 
  if ( $query =~ m/((\?q=).*?&)/ ) { 
   if ( $referer =~ m/handlers/ ) {} 
   else { 
    $SearchInput = substr($1,3); 
    &PrintSearchQuery;}}} 
 elsif ( $referer =~ m/ask/i ) { 
  if ( $query =~ m/((\?q=).*?&)/ ) { 
   $SearchInput = substr($1,3); 
   &PrintSearchQuery;}} 
 elsif ( $referer =~ m/yahoo/i ) { 
  if ( $query =~ m/((\?p=).*?&)/ ) { 
   if ( $referer =~ m/handlers/) {} 
   else { 
    $SearchInput = substr($1,3); 
    &PrintSearchQuery;}}} 
 elsif ( $referer =~ m/lycos/i ) { 
  if ( $query =~ m/((&query=).*?&)/ ) { 
   $SearchInput = substr($1,3); 
   &PrintSearchQuery;}} 
 elsif ( ($referer =~ m/youtube/i) &&  ($referer =~ m/query/i) ) { 
  if ( $query =~ m/(=.*?&)/ ) { 
   $SearchInput = substr($1,1); 
   &PrintSearchQuery;}} 
 elsif ( $referer =~ m/(forecast.weather.gov)/i ) { 
  if ( $query =~ m/(=.*?&)/ ) { 
   $SearchInput = substr($1,1); 
   &PrintSearchQuery;}}} 
close(FILE); 
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exit 0; 
 
sub PrintSearchQuery { 
 #$searchcount++; 
 $SearchInput = substr($SearchInput,0,-1); # remove the last char 
 $SearchInput = lc($SearchInput);    # convert to lowercase 
 $SearchInput =~ tr/+/ /;      # convert + to whitespace 
 $SearchInput =~ tr/-/ /;      # convert - to whitespace 
 $SearchInput =~ s/%([a-f0-9][a-f0-9])/chr(hex($1))/ieg; # convert 

#hex-ascii to whitespace 
 $SearchInput =~ s/[[:punct:]]//g;   # remove any punctuation 
 $SearchInput =~ s/^\s+|\s+$//g;    # remove any extra spaces 
  
 if ($SearchInput =~ m/€/i) {}        
 else { 
  open my $cIP, ">>C_" . $cIP . "_IPFilter.txt" or die $!; 
  print $cIP "$SearchInput\n"; 
  close($cIP);}}  
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B.5 Disorder-Related Search Histories 

#!/usr/bin/perl 
use 5.010; 
use strict; 
use warnings; 
 
#************************************************ 
# Declarations to make before running program 
#************************************************ 
my $line; 
my $TotalAnxietyHits = 0; 
my $TotalPTSDHits = 0; 
my $TotalSuicideHits = 0; 
my $TotalInterestingHits = 0; 
my $FileCount = 0; 
my $dirname = "C:\\Users\\cmiller\\Desktop\\IPFileScrub"; 
open FILE_BucketSort, ">BucketSort_Hits.txt" or die $!; 
open FILE_AnxietyIPs, ">AnxietyIPs.txt" or die $!; 
open FILE_PTSDIPs, ">PTSDIPs.txt" or die $!; 
open FILE_SuicideIPs, ">SuicideIPs.txt" or die $!; 
open FILE_AllIPs, ">AllIPs.txt" or die $!; 
 
#************************************************ 
# move words from dictionaries to array for comparison 
#************************************************ 
open FILE_AnxietyWords, "AnxietyWords.txt" or die $!; 
my @AnxietyWords = (); 
while ($line = <FILE_AnxietyWords>) { 
  chomp $line; 
  push(@AnxietyWords,$line); } 
close(FILE_AnxietyWords); 
 
open FILE_PTSDWords, "PTSDWords.txt" or die $!; 
my @PTSDWords = (); 
while ($line = <FILE_PTSDWords>) { 
  chomp $line; 
  push(@PTSDWords,$line); } 
close(FILE_PTSDWords); 
 
open FILE_SuicideWords, "SuicideWords.txt" or die $!; 
my @SuicideWords = (); 
while ($line = <FILE_SuicideWords>) { 
  chomp $line; 
  push(@SuicideWords,$line); } 
close(FILE_SuicideWords); 
 
opendir DIR,$dirname or die "open failed : $!\n"; 
for(readdir DIR) { 
  if (/IPFilter/i) { 
    open FILE, $_ or die $!; 
 my $FileName = $_; 
    my $InterestingHits = 0; 
    my $AllClusterIPs = 0; 
    my $Word; 
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 my @Matches = (); 
 my @Dictionary = (); 
 
 print FILE_AllIPs "$FileName\n"; 
     
    my %InterestingWordTotals = (Anxiety=>0, PTSD=>0, Suicide=>0); 
 my $sum = 0; 
     
    while ($line = <FILE>){ 
      chomp $line; 
      foreach $Word (@AnxietyWords){if ($line =~ m/^$Word/i) 

{push(@Matches,$line); push(@Dictionary,$Word); 
$InterestingWordTotals{'Anxiety'}++; $InterestingHits++;}} 

      foreach $Word (@PTSDWords){if ($line =~ m/^$Word/i) 
{push(@Matches,$line); push(@Dictionary,$Word); 
$InterestingWordTotals{'PTSD'}++; $InterestingHits++;}} 

      foreach $Word (@SuicideWords){if ($line =~ m/^$Word/i) 
{push(@Matches,$line); push(@Dictionary,$Word); 
$InterestingWordTotals{'Suicide'}++; $InterestingHits++;}}} 

 
      if ( $InterestingHits != 0) { 
  my $highest_val = (sort { $InterestingWordTotals{$b} <=> 

$InterestingWordTotals{$a} } keys %InterestingWordTotals)[0]; 
      print FILE_BucketSort "$FileName,$highest_val"; 
  foreach(@Matches){ 
    my $Match = pop(@Dictionary); 
    print FILE_BucketSort ",($Match)$_";} 
    print FILE_BucketSort "\n"; 
    foreach my $key (keys %InterestingWordTotals) {$sum += 

$InterestingWordTotals{$key};} 
 
  if ($highest_val eq "Anxiety") {print FILE_AnxietyIPs 

"$FileName,$sum\n"; $TotalAnxietyHits++;} 
  elsif ($highest_val eq "PTSD") {print FILE_PTSDIPs 

"$FileName,$sum\n"; $TotalPTSDHits++;} 
  elsif ($highest_val eq "Suicide") {print FILE_SuicideIPs 

"$FileName,$sum\n"; $TotalSuicideHits++;}} 
 
    $FileCount++; 
    print "$FileCount\n"; 
    close(FILE);}} 
 
close(FILE_AnxietyIPs); 
close(FILE_PTSDIPs); 
close(FILE_SuicideIPs); 
close(FILE_AllIPs); 
     
print FILE_BucketSort "Anxiety: $TotalAnxietyHits, PTSD: 
$TotalPTSDHits, Suicide: $TotalSuicideHits"; 
close(FILE_BucketSort); 
exit 0; 
 
sub largest_value (\%) { 
  my $hash = shift; 
  keys %$hash;       # reset the each iterator 
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  my ($large_key, $large_val) = each %$hash; 
  while (my ($key, $val) = each %$hash) { 
    if ($val > $large_val) { 
      $large_val = $val; 
      $large_key = $key;}} 
  $large_key;} 
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B.6 Cluster Statistics 

#!/usr/bin/perl 
use 5.010; 
use strict; 
use warnings; 
 
my $dirname = "C:\\Users\\cmiller\\Desktop\\IPFileScrub"; 
open FILE_ClusterStats, ">ClusterStats.txt" or die $!; 
print FILE_ClusterStats "ClusterID,# of Docs,# of 

Searches,SC,MD,ND,AR,FL,KS,NJ,IL,CA\n"; 
 
#************************************************ 
# Declarations to make before running program 
#************************************************ 
my $line; 
my $Base; 
my $ClusterID;  
my %ClusterDocs = (); 
my %Searches = (); 
 
opendir DIR,$dirname or die "open failed : $!\n"; 
for(readdir DIR) { 
  if (/ClusterID/i) { 
 open FILE_ClusterID, $_ or die $!; 
 $ClusterID = $_; 
 my %BaseDocCounter = (); 
 while ($line = <FILE_ClusterID>){ 
   %ClusterDocs{$ClusterID}++; 
   open FILE_IP, $line or die $!; 
  $Base = substr($_,0,2); 
  $BaseDocCounter{$Base}++; 
  while ($line = <FILE_IP>){$Searches{$ClusterID}++;} 
  close(FILE_IP); 
  print FILE_ClusterStats 

"$ClusterID,$ClusterDocs{$ClusterID},$Searches{$ClusterID}, 
$BaseDocCounter{'C_'},$BaseDocCounter{'D_'}, 
$BaseDocCounter{'G_'},$BaseDocCounter{'L_'}, 
$BaseDocCounter{'MD'},$BaseDocCounter{'MC'}, 
$BaseDocCounter{'MG'},$BaseDocCounter{'S_'}, 
$BaseDocCounter{'T__'}\n";}} 

  close(FILE_ClusterID);} 
 
close(FILE_ClusterStats); 
exit 0; 
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Appendix C. LDASOM Topics 

Topic 0: 45 western airmen math animals route bin groups definition run  
Topic 1: did death wikipedia cartoon guy marathon results say watches characters  
Topic 2: people data magazine joseph vista solar 06 purple iii fine  
Topic 3: date cover release gmc earth save earthquake function julian sierra  
Topic 4: force air adls enlisted learn learning advanced distributed training cbt  
Topic 5: park child divorce support laws coloring masks suicide knives comic  
Topic 6: dog model gold dogs bikes shops reason border bruce breeders  
Topic 7: afi 91 31 33 afosh chapter 501 201 usc volume  
Topic 8: use application single download remove create waste 64 poem bit  
Topic 9: dental medal robert awards study ribbon ribbons decorations challenge dentist  
Topic 10: fire kindle ups amazon 35 spring cities kate costume smart  
Topic 11: civilian age square budget value cuts flow suit head right  
Topic 12: running nike diagram shoe directions ham mid spanish honey 97  
Topic 13: template lowes need photography mr cleaning patrick carpet cakes wave  
Topic 14: hand tsp oregon pharmacy columbus overseas hiring specialist freeze eyes  
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